Differential Cargo Mobilisation within Weibel-Palade Bodies after Transient Fusion with the Plasma Membrane
نویسندگان
چکیده
Inflammatory chemokines can be selectively released from Weibel-Palade bodies (WPBs) during kiss-and-run exocytosis. Such selectivity may arise from molecular size filtering by the fusion pore, however differential intra-WPB cargo re-mobilisation following fusion-induced structural changes within the WPB may also contribute to this process. To determine whether WPB cargo molecules are differentially re-mobilised, we applied FRAP to residual post-fusion WPB structures formed after transient exocytosis in which some or all of the fluorescent cargo was retained. Transient fusion resulted in WPB collapse from a rod to a spheroid shape accompanied by substantial swelling (>2 times by surface area) and membrane mixing between the WPB and plasma membranes. Post-fusion WPBs supported cumulative WPB exocytosis. To quantify diffusion inside rounded organelles we developed a method of FRAP analysis based on image moments. FRAP analysis showed that von Willebrand factor-EGFP (VWF-EGFP) and the VWF-propolypeptide-EGFP (Pro-EGFP) were immobile in post-fusion WPBs. Because Eotaxin-3-EGFP and ssEGFP (small soluble cargo proteins) were largely depleted from post-fusion WPBs, we studied these molecules in cells preincubated in the weak base NH4Cl which caused WPB alkalinisation and rounding similar to that produced by plasma membrane fusion. In these cells we found a dramatic increase in mobilities of Eotaxin-3-EGFP and ssEGFP that exceeded the resolution of our method (∼ 2.4 µm2/s mean). In contrast, the membrane mobilities of EGFP-CD63 and EGFP-Rab27A in post-fusion WPBs were unchanged, while P-selectin-EGFP acquired mobility. Our data suggest that selective re-mobilisation of chemokines during transient fusion contributes to selective chemokine secretion during transient WPB exocytosis. Selective secretion provides a mechanism to regulate intravascular inflammatory processes with reduced risk of thrombosis.
منابع مشابه
A complete Rab screening reveals novel insights in Weibel-Palade body exocytosis.
Weibel-Palade bodies (WPBs) are endothelial-cell-specific organelles that, upon fusion with the plasma membrane, release cargo molecules that are essential in blood vessel abnormalities, such as thrombosis and inflammation, as well as in angiogenesis. Despite the importance of WPBs, the basic mechanisms that mediate their secretion are only poorly understood. Rab GTPases play fundamental role i...
متن کاملMultigranular exocytosis of Weibel-Palade bodies in vascular endothelial cells.
Regulated exocytosis of Weibel-Palade bodies (WPBs) is a pivotal mechanism via which vascular endothelial cells initiate repair in response to injury and inflammation. Several pathways have been proposed to enable differential release of bioactive molecules from WPBs under different pathophysiologic conditions. Due to the complexity, many aspects of WPB biogenesis and exocytosis are still poorl...
متن کاملThe tetraspanin CD63/lamp3 cycles between endocytic and secretory compartments in human endothelial cells.
In the present study, we show that in human endothelial cells the tetraspanin CD63/lamp3 distributes predominantly to the internal membranes of multivesicular-multilamellar late endosomes, which contain the unique lipid lysobisphosphatidic acid. Some CD63/lamp3 is also present in Weibel-Palade bodies, the characteristic secretory organelle of these cells. We find that CD63/lamp3 molecules can b...
متن کاملMorphological alterations in endothelial cells associated with the release of von Willebrand factor after thrombin generation in vivo.
von Willebrand factor (vWF) is synthesized by endothelial cells and stored in endothelium-specific granules, the Weibel-Palade (WP) bodies. The release of vWF from endothelial cells in vitro in response to secretagogues such as thrombin is considered to result in the loss of WP bodies through the fusion of the WP bodies with the plasma membrane. Biochemical and morphological techniques, includi...
متن کاملSorting nexin 17 accelerates internalization yet retards degradation of P-selectin.
The transient appearance of P-selectin on the surface of endothelial cells helps recruit leukocytes into sites of inflammation. The tight control of cell surface P-selectin on these cells depends on regulated exocytosis of Weibel-Palade bodies where the protein is stored and on its rapid endocytosis. After endocytosis, P-selectin is either sorted via endosomes and the Golgi apparatus for storag...
متن کامل